Commutators in Division Algebras

Mehdi Aaghabali

School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building Edinburgh, UK

・ロト ・回ト ・ヨト ・ヨト

Contents

- 2 Generating Properties of Commutators
- **3** Commutatitivity Conditions on Commutators
- 4 Algebraic Conditions on Commutators

((日)) (日) (日)

A Question!

A Brief Review

- Consider a special property P in a ring:
- Commutativity
- Algebraicity

Whether one can specify a set or a substructure S, such that the property P for S implies the property P for the whole ring.

S=Set of Generators

► Question 1:

Let A be an algebraic structure generated by set S. Whether property P for S implies property P for A?

► Question 2:

Let A be an algebraic structure generated by set S. Whether property P for S implies property Q for A?

・ 同 ト ・ ヨ ト ・ ヨ ト

Candidates for *S*

- ► General Division Algebras
- Multiplicative and additive commutators
- Subgroups D' and [D, D].
- Normal subgroups of D^* .
- ► Division Algebras with Involutions
- Symmetric elements
- Skew-symmetric elements
- Unitary elements.

・日・ ・ ヨ・ ・ ヨ・

Some Basic Definitions

Let D be a division algebra over its center F.

Definition ▶ Denote by D' the multiplicative subgroup of D* generated by the all multiplicative commutators of D.

Definition

Denote by [D, D] the additive subgroup of commutators generated by the all additive commutators of D.

Definition

• Denote by T(D) the vector space generated by the all multiplicative commutators over F.

・ロン ・回 と ・ヨン ・ ヨン

臣

Some Definitions

Let D be division ring with center F.

Definition • We say A is radical over B if for every element $a \in A$ there exists integer n = n(a) such that $a^n \in B$.

Definition

▶ Element $a \in A$ is called periodic if there exists integer *n* such that $a^n = 1$.

Definition

▶ Element $a \in A$ is called algebraic of degree *n* over center if satisfies a polynomial $f(x) \in F[x]$ of degree *n*.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Commutators in Division Rings

Commutators in Division Rings

and Their Generating Role

Mehdi Aaghabali Commutators in Division Algebras

・ロン ・四 と ・ ヨ と ・ ヨ と

Commutators as Generators

"first course in non-commutative rings" due to T.Y. LAM

Theorem (Corollary 13.19, p. 211)

► Let *D* be a non-commutative division ring with center *F*. Then *D* is generated as an *F*-algebra by all additive commutators of *D*.

Theorem (Corollary 13.9, p. 207)

► A non-commutative division ring *D* is generated as a division ring by all of its multiplicative commutators.

Conjecture (M.A, Akbari-Ariannejad-Madadi)

► A division ring *D* with center *F* is generated as a vector space over *F* by all of its multiplicative commutators.

Theorem (M.A., Akbari-Ariannejad-Madadi)

• If D is algebraic with characteristic zero, then T(D) = D.

・ロン ・回 と ・ ヨ と ・ ヨ と

Trace Functions

▶ Let K/F be a field extension with $dim_F K = n$. For $a \in K$, define

$$L_a: K \longrightarrow K,$$

where $L_a(b) = ab$.

Definition

• The Trace function is defined for all $a \in K$ by

$$T_{K/F}(a) = Tr(L_a).$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Trace Functions

Theorem

▶ Let K/F be a field extension with $dim_F K = n$ and

$$f(x) = x^m + b_{m-1}x^{m-1} + \dots + b_1x + b_0$$

be the minimal polynomial of $a \in K$. Then

$$T_{K/F}(a) = -\frac{n}{m}b_{m-1}.$$

・ロン ・回 と ・ ヨン ・ ヨン

Wedderburn's Theorem

Theorem (Wedderburn)

- ▶ Let *D* be a division ring with center *F*
- $a \in D^*$ be algebraic with minimal polynomial $f(x) \in F[x]$ of degree *n*.

Then

$$f(x) = (x - a_1) \dots (x - a_n) \in D[x].$$

Remark

Note that linear factors are not unique!

() < </p>

Trace Formula

• Let $a \in D^*$ be algebraic with minimal polynomial

$$f(x) = (x - a) \dots (x - a_{n-1}) \in D[x].$$

Then

$$T_{F(a)/F}(a) = a + a_1 + \dots + a_{n-1}$$

= $a + d_1 a d_1^{-1} + \dots d_{n-1} a d_{n-1}^{-1}$
= $a(1 + a^{-1} d_1 a d_1^{-1} + a^{-1} d_2 a d_2^{-1} + \dots + a^{-1} d_{n-1} a d_{n-1}^{-1})$
= ad ,

where $d \in F(a) \cap T(D)$.

Theorem (M.A., Akbari-Ariannejad-Madadi)

▶ Let $a \in D$ be algebraic and $T_{F(a)/F}(a) \neq 0$, then $a^{-1} \in T(D)$.

T(D) as Lie Ideal

Theorem (M. Aaghabli)

▶ Let *D* be an algebraic non-commutaitve division ring with center *F*. Then T(D) is a non-central Lie ideal of *D*.

Theorem (M. Aaghabali)

• Let D be a centrally finite division ring over F. Then T(D) = D.

Finite Dimension T(D)

Theorem (M.A., Akbari-Ariannejad-Madadi)

▶ Let *D* be a division ring with center *F*. If $dim_F T(D) = n < \infty$, then $dim_F D < \infty$.

・ロン ・回 と ・ ヨン ・ ヨン

Commutators in Division Rings

Commutators in Division Rings and

Commutativity Conditions

・ロン ・回 と ・ ヨ と ・ ヨ と …

Algebraic Conditions

Two Important Commutativity Conditions

Theorem (Wedderburn's Little Theorem)

Every finite division ring is commutative.

Theorem (Kaplansky)

▶ If *D* is a division ring radical over its center, then *D* is commutative.

A (1) > A (2) > A (2) >

Finiteness Conditions

Theorem (Herstein-Procesi-Schacher)

► If *D* is a division ring with center *F* whose all additive commutators are radical over the center, then

$dim_F D \leq 4$

Commutativity Conditions

Conjecture (Herstein)

► Every division ring whose all multiplicative commutators are radical over its center must be commutative.

• General case is still open!

• Herstein (1978): Statement holds when commutators are periodic.

• Herstein (1978): Statement holds for centrally finite division rings.

$$\dim_F D = n^2 \leq \infty.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Commutativity Conditions

- Herstein (1980): Statement holds for division rings with uncountable centers.
- Putcha-Yaqub (1974): The conjecture is true if the radical degree is a power of 2.
- Mahdavi-Akbari (1996): The conjecture is true if the radical degree is a power of 6.

・ロン ・回 と ・ ヨ と ・ ヨ と

Herstein Conjecture (Special Case)

Theorem (Mahdavi (1995))

Let *D* be an algebraic division algebra over its center *F*. If D' is radical over the center, then *D* is commutative.

Theorem (Mahdavi (1995))

Let *D* be a division algebra over its center *F*. If D' is radical over the center, then *D* is commutative.

Theorem (M.A., Akbari-Ariannejad-Madadi)

Let *D* be a division algebra over its center *F*. If T(D) is radical over the center, then *D* is commutative.

・ロン ・回 と ・ ヨ と ・ ヨ と …

Jacobson Theorem

Theorem (Jacobson)

► Every division algebra algebraic over a finite field is commutative.

Theorem (Mahdavi (1996))

• Every division algebra whose multiplicative group of commutators is algebraic over a finite field is commutative.

() < </p>

Noether-Jacobson Theorem

Theorem (Noether-Jacobson)

► Every non-commutative algebraic division ring over its center contains a non-central separable element.

Theorem (Mahdavi (1995))

• Every non-commutative algebraic division ring over its center contains a non-central separable element in its multiplicative subgroup of commutators.

・ロト ・回ト ・ヨト ・ヨト

Commutators in Division Rings

Commutators in Division Rings and

Algebraicity Conditions

Mehdi Aaghabali Commutators in Division Algebras

・ロン ・回 と ・ ヨン ・ ヨン

Algebraic Division Algebras

A Brief Review

- ► Let *D* be a division ring:
- Multiplicative Commutators
- Additive Commutators
- Subgroups D' and [D, D]

Whether one can deduce algebraicity of *D* over center if mentioned sets and structures are algebraic over the center.

・ 同 ト ・ ヨ ト ・ ヨ ト

Algebraicity of D' and [D, D]

Theorem (Akbari-Mahdavi (1996))

▶ Let D' be algebraic over the center, then D is algebraic over the center.

Theorem (Akbari-Ariannejad-Mehraabaadi (1998))

▶ Let [D, D] be algebraic over the center, then *D* is algebraic over the center, provided char(D) = 0.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem (M.A., Akbari-Ariannejad-Madadi)

- ▶ Let *D* be a division algebra over its center *F*. If all multiplicative commutators are algebraic over *F*, then *D* is algebraic provided that *F* is UNCOUNTABLE.
- Assume $a \in D \setminus F$ and consider $y \in D^*$ arbitrarily.
- Either $y \in C_D(a)$ or $y \notin C_D(a)$.
- $y \notin C_D(a)$, for every $r \in F$ we have:

 $0 \neq b = ay - ya = a(y+r) - (y+r)a = (a(y+r)a^{-1}(y+r)^{-1} - 1)(y+r)a$

• For every $r \in F$, $(y + r)ab^{-1}$ is algebraic over F.

$$f(t) \in F[t]; f((y+r)ab^{-1}) = 0$$

• put $c = ab^{-1}$, then

$$((y+r)c)^n + \alpha_1((y+r)c)^{n-1} + \dots + \alpha_{n-1}((y+r)c) + \alpha_n = 0$$

•
$$(y+r)(c((y+r)c)^{n-1}+\alpha_1c((y+r)c)^{n-2})+\cdots+\alpha_{n-1}c)=-\alpha_n$$

•
$$-\alpha_n(y+r)^{-1} = c((y+r)c)^{n-1} + \alpha_1 c((y+r)c)^{n-2}) + \cdots + \alpha_{n-1}c$$

• assume the set of all words of finite length consisting of two letters *y*, *c*.

- consider vector space generated by the set of all such words.
- clearly, for every $r \in F$, we have $(y + r)^{-1} \in W$.
- *dim_FW* is countable but *F* is uncountable

ロト (日) (王) (日)

• hence we could find that $(y + r_1)^{-1}, \ldots, (y + r_m)^{-1}$ are linearly dependent over *F*.

Theorem

F.

▶ Let *D* be a division algebra and *K* be a subfield of *D*. For $a \in D$, if $\dim_K K[a] \ge n$, then for any distinct elements $\alpha_1, \ldots, \alpha_n \in Z(D)$, $(a - \alpha_1)^{-1}, \ldots, (a - \alpha_n)^{-1}$ are linearly independent.

- thus y is algebraic.
- now, assume $y \in C_D(a)$ and $z \notin C_D(a)$.
- $(y+r)z \notin C_D(a)$, for every $r \in F$ is algebraic.
- repeating argument for (y + r)z we find that y is algebraic over

(ロ) (同) (E) (E) (E)

Lemma (M.A., Akbari-Ariannejad-Madadi)

• Let *D* be a division ring with center *F*, T(D) be Algebraic over *F* and Char(D) = 0. Then for any two Algebraic elements $a, b \in D$, the set $S = \{a + b, aba, a^2b\}$ is Algebraic over *F*.

Theorem (M.A., Akbari-Ariannejad-Madadi)

▶ Let *D* be a division ring with center *F* and Char(D) = 0. Then T(D) is Algebraic over *F* if and only if *D* is Algebraic over *F*.

・ロシ ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Jacobson)

► Every division ring whose elements are algebraic of bounded degree over its center is centrally finite.

Theorem (Bell-Drensky-Sharifi (2013))

► Every division ring whose elements are left algebraic of bounded degree over a not necessarily central subfield is centrally finite.

- 4 同 6 4 日 6 4 日 6

Theorem (M.A., Akbari-Bien)

▶ Let *D* be a division ring with infinite center. If *D* contains element *a* such that $xax^{-1}a^{-1}$, for every $x \in D^*$ are left algebraic of bounded degree over a not necessarily central subfield, then *D* is centrally finite.

・ロト ・回ト ・ヨト ・ヨト

Theorem (M.A., Akbari-Bien)

▶ Let *D* be a division ring with infinite center *F* and not necessarily central subfield *K*. If *D* contains a non-central normal subgroup *N* left algebraic of bounded degree *n* over *K*, then *D* is centrally finite.

- 4 回 2 - 4 □ 2 - 4 □

Theorem (M.A., Akbari-Bien)

▶ Let *D* be a division ring with infinite center and not necessarily central subfield *K*. Assume that *K* contains a non-central algebraic element *a* over the center. If all additive commutators ax - xa, for every $x \in D$ are left algebraic of bounded degree over *K*, then *D* is centrally finite.

A (1) > A (2) > A (2) >

Theorem (M.A., Akbari-Bien)

▶ Let *D* be a division ring with center *F* and not necessarily central subfield *K*. Assume that D' is left algebraic of bounded degree over a *K*, then *D* is centrally finite.

- 4 回 2 - 4 □ 2 - 4 □

Thank you for your attention

Mehdi Aaghabali Commutators in Division Algebras

・ロン ・回 と ・ ヨ と ・ ヨ と …